a__nats → a__adx(a__zeros)
a__zeros → cons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__nats → nats
a__adx(X) → adx(X)
a__zeros → zeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)
↳ QTRS
↳ DependencyPairsProof
a__nats → a__adx(a__zeros)
a__zeros → cons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__nats → nats
a__adx(X) → adx(X)
a__zeros → zeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)
MARK(tl(X)) → A__TL(mark(X))
MARK(hd(X)) → A__HD(mark(X))
MARK(tl(X)) → MARK(X)
A__HD(cons(X, Y)) → MARK(X)
MARK(adx(X)) → A__ADX(mark(X))
A__NATS → A__ADX(a__zeros)
MARK(incr(X)) → A__INCR(mark(X))
MARK(zeros) → A__ZEROS
A__TL(cons(X, Y)) → MARK(Y)
MARK(hd(X)) → MARK(X)
MARK(nats) → A__NATS
A__NATS → A__ZEROS
A__ADX(cons(X, Y)) → A__INCR(cons(X, adx(Y)))
MARK(incr(X)) → MARK(X)
MARK(adx(X)) → MARK(X)
a__nats → a__adx(a__zeros)
a__zeros → cons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__nats → nats
a__adx(X) → adx(X)
a__zeros → zeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
MARK(tl(X)) → A__TL(mark(X))
MARK(hd(X)) → A__HD(mark(X))
MARK(tl(X)) → MARK(X)
A__HD(cons(X, Y)) → MARK(X)
MARK(adx(X)) → A__ADX(mark(X))
A__NATS → A__ADX(a__zeros)
MARK(incr(X)) → A__INCR(mark(X))
MARK(zeros) → A__ZEROS
A__TL(cons(X, Y)) → MARK(Y)
MARK(hd(X)) → MARK(X)
MARK(nats) → A__NATS
A__NATS → A__ZEROS
A__ADX(cons(X, Y)) → A__INCR(cons(X, adx(Y)))
MARK(incr(X)) → MARK(X)
MARK(adx(X)) → MARK(X)
a__nats → a__adx(a__zeros)
a__zeros → cons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__nats → nats
a__adx(X) → adx(X)
a__zeros → zeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
MARK(hd(X)) → A__HD(mark(X))
MARK(tl(X)) → A__TL(mark(X))
MARK(tl(X)) → MARK(X)
A__HD(cons(X, Y)) → MARK(X)
MARK(adx(X)) → A__ADX(mark(X))
MARK(incr(X)) → A__INCR(mark(X))
A__NATS → A__ADX(a__zeros)
MARK(zeros) → A__ZEROS
MARK(hd(X)) → MARK(X)
A__TL(cons(X, Y)) → MARK(Y)
MARK(nats) → A__NATS
A__NATS → A__ZEROS
MARK(incr(X)) → MARK(X)
A__ADX(cons(X, Y)) → A__INCR(cons(X, adx(Y)))
MARK(adx(X)) → MARK(X)
a__nats → a__adx(a__zeros)
a__zeros → cons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__nats → nats
a__adx(X) → adx(X)
a__zeros → zeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
MARK(tl(X)) → A__TL(mark(X))
MARK(hd(X)) → A__HD(mark(X))
MARK(tl(X)) → MARK(X)
A__HD(cons(X, Y)) → MARK(X)
MARK(incr(X)) → MARK(X)
A__TL(cons(X, Y)) → MARK(Y)
MARK(hd(X)) → MARK(X)
MARK(adx(X)) → MARK(X)
a__nats → a__adx(a__zeros)
a__zeros → cons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__nats → nats
a__adx(X) → adx(X)
a__zeros → zeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(tl(X)) → MARK(X)
A__HD(cons(X, Y)) → MARK(X)
A__TL(cons(X, Y)) → MARK(Y)
MARK(hd(X)) → MARK(X)
Used ordering: Combined order from the following AFS and order.
MARK(tl(X)) → A__TL(mark(X))
MARK(hd(X)) → A__HD(mark(X))
MARK(incr(X)) → MARK(X)
MARK(adx(X)) → MARK(X)
[MARK1, ATL1, AHD1] > [tl1, mark1, hd1, atl1, ahd1] > azeros > 0 > cons2
[MARK1, ATL1, AHD1] > [tl1, mark1, hd1, atl1, ahd1] > azeros > zeros > cons2
[nats, anats] > azeros > 0 > cons2
[nats, anats] > azeros > zeros > cons2
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
mark(nats) → a__nats
a__tl(X) → tl(X)
mark(0) → 0
a__nats → a__adx(a__zeros)
a__hd(X) → hd(X)
mark(incr(X)) → a__incr(mark(X))
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
mark(s(X)) → s(X)
mark(hd(X)) → a__hd(mark(X))
a__hd(cons(X, Y)) → mark(X)
mark(tl(X)) → a__tl(mark(X))
a__tl(cons(X, Y)) → mark(Y)
a__incr(X) → incr(X)
a__zeros → cons(0, zeros)
mark(zeros) → a__zeros
a__nats → nats
a__zeros → zeros
mark(adx(X)) → a__adx(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
a__adx(X) → adx(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
MARK(hd(X)) → A__HD(mark(X))
MARK(tl(X)) → A__TL(mark(X))
MARK(incr(X)) → MARK(X)
MARK(adx(X)) → MARK(X)
a__nats → a__adx(a__zeros)
a__zeros → cons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__nats → nats
a__adx(X) → adx(X)
a__zeros → zeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
MARK(incr(X)) → MARK(X)
MARK(adx(X)) → MARK(X)
a__nats → a__adx(a__zeros)
a__zeros → cons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__nats → nats
a__adx(X) → adx(X)
a__zeros → zeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(incr(X)) → MARK(X)
Used ordering: Combined order from the following AFS and order.
MARK(adx(X)) → MARK(X)
[MARK1, incr1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
MARK(adx(X)) → MARK(X)
a__nats → a__adx(a__zeros)
a__zeros → cons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__nats → nats
a__adx(X) → adx(X)
a__zeros → zeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(adx(X)) → MARK(X)
[MARK1, adx1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
a__nats → a__adx(a__zeros)
a__zeros → cons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__nats → nats
a__adx(X) → adx(X)
a__zeros → zeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)